sparrow.im.segment_points#
- sparrow.im.segment_points(sdata, labels_layer, points_layer, name_x='x', name_y='y', name_gene='gene', model=<function _baysor>, output_labels_layer='segmentation_mask', output_shapes_layer='segmentation_mask_boundaries', labels_layer_align=None, depth=100, chunks='auto', boundary='reflect', trim=False, iou=True, iou_depth=2, iou_threshold=0.7, crd=None, to_coordinate_system='global', scale_factors=None, overwrite=False, **kwargs)#
Segment images using a
points_layer
and a prior (labels_layer
) and add segmentation results (labels layer and shapes layer) to the SpatialData object.Currently only segmentation using a prior is supported (i.e.
labels_layer
should be provided). Thepoints_layer
and thelabels_layer
should be registered (i.e. same coordinate space insdata
).- Parameters:
sdata (
SpatialData
) – The SpatialData object containing the image layer to segment.labels_layer (
str
) – The labels layer insdata
to be used as a prior.points_layer (
str
) – The points layer insdata
to be used for segmentation.name_x (
str
(default:'x'
)) – Column name for x-coordinates of the transcripts in the points layer, by default “x”.name_y (
str
(default:'y'
)) – Column name for y-coordinates of the transcripts in the points layer, by default “y”.name_gene (
str
(default:'gene'
)) – Column name in the points_layer representing gene information.model (
Callable
[...
,NDArray
] (default:<function _baysor at 0x7fe4ba851e10>
)) – The segmentation model function used to process the images. Callable should take as input numpy arrays of dimension(z,y,x,c)
, a pandas dataframe with the transcripts, and parameters ‘name_x’, ‘name_y’ and ‘name_gene’ with the column names of the x and y location and the column name for the transcripts. It should return labels of dimension(z,y,x,c)
. Currently only 2D segmentation is supported(y,x)
. It can have an arbitrary number of other parameters.output_labels_layer (
str
|list
[str
] (default:'segmentation_mask'
)) – Name of the labels layer in which segmentation results will be stored insdata
. Can be a list of strings, ifmodel
returns multi channel mask. If provided as a list, its length should match thec
dimension of the output ofmodel
.output_shapes_layer (
str
|list
[str
] |None
(default:'segmentation_mask_boundaries'
)) – Name of the shapes layer where boundaries obtained output_labels_layer will be stored. If set to None, shapes won’t be stored. Can be a list of strings, ifmodel
returns multi channel mask. If provided as a list, its length should match thec
dimension of the output ofmodel
.labels_layer_align (
Optional
[str
] (default:None
)) – Name of the labels layer inoutput_labels_layer
to align to ifmodel
retuns multi channel mask.depth (
tuple
[int
,int
] |int
(default:100
)) – The depth iny
andx
dimension. The depth parameter is passed todask.array.map_overlap
. If trim is set toFalse
, it’s recommended to set the depth to a value greater than twice the estimated diameter of the cells/nulcei.chunks (
str
|int
|tuple
[int
,int
] |None
(default:'auto'
)) – Chunk sizes for processing. Can be a string, integer or tuple of integers. If chunks is a Tuple, they contain the chunk size that will be used iny
andx
dimension. Chunking inz
orc
dimension is not supported.boundary (
str
(default:'reflect'
)) – Boundary parameter passed todask.array.map_overlap
.trim (
bool
(default:False
)) – If set to True, overlapping regions will be processed using thesquidpy
algorithm. If set to False, thesparrow
algorithm will be employed instead. For dense cell distributions, we recommend setting trim to False.iou (
bool
(default:True
)) – If set to True, will try to harmonize labels across chunks using a label adjacency graph with an iou threshold (seesparrow.image.segmentation.utils._link_labels
). If set to False, conflicts will be resolved using an algorithm that only retains masks with the center in the chunk. Settingiou
to False gives good results if there is reasonable agreement of the predicted labels accross adjacent chunks.iou_depth (
tuple
[int
,int
] |int
(default:2
)) – iou depth used for harmonizing labels across chunks. Note that iflabels_layer_align
is specified,iou_depth
will also be used for harmonizing labels between different chunks.iou_threshold (
float
(default:0.7
)) – iou threshold used for harmonizing labels across chunks. Note that iflabels_layer_align
is specified,iou_threshold
will also be used for harmonizing labels between different chunks.crd (
Optional
[tuple
[int
,int
,int
,int
]] (default:None
)) – The coordinates specifying the region of the image to be segmented. Defines the bounds(x_min, x_max, y_min, y_max)
.to_coordinate_system (
str
(default:'global'
)) – The coordinate system to which thecrd
is specified. Ignored ifcrd
is None.scale_factors (
Optional
[Sequence
[Union
[dict
[str
,int
],int
]]] (default:None
)) – Scale factors to apply for multiscale.overwrite (
bool
(default:False
)) – IfTrue
, overwrites the existing layers if they exist. Otherwise, raises an error if the layers exist.**kwargs (
Any
) – Additional keyword arguments passed to the providedmodel
.
- Return type:
SpatialData
- Returns:
: Updated
sdata
object containing the segmentation results.- Raises:
TypeError – If the provided
model
is not callable.